Skip to main content

Polyphenols of cocoa: inhibition of mammalian 15-lipoxygenase.

Date:
Publisher: Biological Chemistry
Authors: Schewe, T.; Sadik, C.; Klotz, L. O.; Yoshimoto, T.; Kuhn, H.; Sies, H.

Some cocoas and chocolates are rich in (-)-epicatechin and its related oligomers, the procyanidins. Fractions of these compounds, isolated from the seeds of Theobroma cacao, caused dose-dependent inhibition of isolated rabbit 15-lipoxygenase-1 with the larger oligomers being more active; the decamer fraction revealed an IC50 of 0.8 microM. Among the monomeric flavanols, epigallocatechin gallate (IC50 = 4 microM) and epicatechin gallate (5 microM) were more potent than (-)-epicatechin (IC50 = 60 microM). (-)-Epicatechin and procyanidin nonamer also inhibited the formation of 15-hydroxy-eicosatetraenoic acid from arachidonic acid in rabbit smooth muscle cells transfected with human 15-lipoxygenase-1. In contrast, inhibition of the lipoxygenase pathway in J774A.1 cells transfected with porcine leukocyte-type 12-lipoxygenase (another representative of the 12/15-lipoxygenase family) was only observed upon sonication of the cells, suggesting a membrane barrier for flavanols in these cells. Moreover, epicatechin (IC50 approx. 15 microM) and the procyanidin decamer inhibited recombinant human platelet 12-lipoxygenase. These observations suggest general lipoxygenase-inhibitory potency of flavanols and procyanidins that may contribute to their putative beneficial effects on the cardiovascular system in man. Thus, they may provide a plausible explanation for recent literature reports indicating that procyanidins decrease the leukotriene/prostacyclin ratio in humans and human aortic endothelial cells.

See the Full Study > (opens in a new tab)